209 research outputs found

    Immunome Research

    Get PDF
    Immunology research has been transformed in the post-genomics era, with high throughput molecular biology and information technologies taking an increasingly central role. This has led to the development of a new area of science termed "Immunomics", that encompasses genomic, high throughput and bioinformatic approaches to immunology. In recognition of the increasing importance of this field, Immunome Research is a new Open Access, online journal, that will publish cutting edge research across the field of Immunomics. Immunome Research will publish a wide range of article types including specialty immunology databases, immunology database tools, immunome epitope research, epitope analysis tools, high-throughput technologies (gene sequencing, microarrays, proteomics), white papers, mathematical and theoretical models, and prediction tools. Immunome Research is the official journal of the International Immunomics Society (IIMMS)

    The systems biology of host pathogen interactions

    Get PDF
    Non

    Identification of "pathologs" (disease-related genes) from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Get PDF
    BACKGROUND: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. RESULTS: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%), hereditary (24%), immunological (5%), cardio-vascular (4%), or other (14%), disorders. CONCLUSIONS: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets

    Dyspnea in Pulmonary Arterial Hypertension

    Get PDF

    The Chemistry and Sources of Fructose and Their Effect on its Utility and Health Implications

    Get PDF
    Fructose is a significant component in natural foods and has become one of the most prevalent sweeteners added in the manufacture of food. Fructose is also used as a pharmaceutical excipient and derivatives of fructose are exploited as renewable chemical building blocks. Herein we discuss the chemistry and sources of this monosaccharide and how these factors affect the utility and health implications of fructose

    Will blockchain technology revolutionize excipient supply chain management?

    Get PDF
    Blockchain technology provides a major advance for excipient supply chains, assisting in the delivery of unadulterated, source, process and transit verifiable excipients (or APIs and drug products), but does not alleviate the necessity for quality audits. The adoption of blockchain technology should make the process faster and make the transactional record more robust and reliable, however other rate-limiting steps of the excipient supply chain including transit and testing time will remain. In terms of pure speed, blockchain is suited to financial transactions where no physical goods change hands (such as financial instruments and derivatives, stocks, insurance, land-registry, taxation, medical records etc.) but this does not mean that it should be ignored in respect of the advantages it could offer in improving the excipient supply chain

    Computational vaccinology and the ICoVax 2012 workshop

    Full text link
    Abstract Computational vaccinology or vaccine informatics is an interdisciplinary field that addresses scientific and clinical questions in vaccinology using computational and informatics approaches. Computational vaccinology overlaps with many other fields such as immunoinformatics, reverse vaccinology, postlicensure vaccine research, vaccinomics, literature mining, and systems vaccinology. The second ISV Pre-conference Computational Vaccinology Workshop (ICoVax 2012) was held on October 13, 2013 in Shanghai, China. A number of topics were presented in the workshop, including allergen predictions, prediction of linear T cell epitopes and functional conformational epitopes, prediction of protein-ligand binding regions, vaccine design using reverse vaccinology, and case studies in computational vaccinology. Although a significant progress has been made to date, a number of challenges still exist in the field. This Editorial provides a list of major challenges for the future of computational vaccinology and identifies developing themes that will expand and evolve over the next few years.http://deepblue.lib.umich.edu/bitstream/2027.42/112516/1/12859_2013_Article_5721.pd
    • …
    corecore